煤炭工程 ›› 2025, Vol. 57 ›› Issue (5): 156-162.doi: 10. 11799/ ce202505021

• 研究探讨 • 上一篇    下一篇

基于钻孔钻进过程数据驱动的地层可钻性预测方法

陈韬,张幼振,钟自成   

  1. 1. 煤炭科学研究总院
    2. 中煤科工西安研究院(集团)有限公司
  • 收稿日期:2024-09-09 修回日期:2024-12-12 出版日期:2025-05-13 发布日期:2025-07-03
  • 通讯作者: 张幼振 E-mail:zhangyouzhen@cctegxian.com

Prediction method of formation drillability based on drilling process data driving

  • Received:2024-09-09 Revised:2024-12-12 Online:2025-05-13 Published:2025-07-03

摘要:

复杂多变的地层条件给煤矿井下安全高效生产带来了巨大挑战,通过钻进数据建立地层可钻性预测模型,实现地层类型智能感知,可为钻进过程提供地质信息保障。针对煤矿井下钻进数据存在异常值、样本量不平衡等问题,采用局部离群因子异常检测算法(LOF)剔除异常钻进数据,利用生成式对抗网络(GAN)对原始钻进样本进行训练,获取了钻进生成样本以构建平衡钻进数据集。提出了一种鲸鱼算法优化核极限学习机(WOA-KELM)的钻进地层可钻性预测方法,构建基于鲸鱼算法优化后的核极限学习机预测模型预测地层可钻性等级。通过淮南矿区现场实钻数据获得了包括回转压力、钻进压力、钻速等钻进数据,利用LOF剔除异常值后通过GAN生成与原始样本相似度高的生成样本,应用箱线图、识别率、散点图分布验证了生成钻进样本的可靠性。利用生成样本平衡钻进数据集通过WOA-KELM建立钻进过程地层可钻性预测模型,对地层可钻性预测准确率达98%左右,优于SVM、KNN等识别模型。研究结果为煤矿井下自适应钻进与工况智能感知技术提供了参考和借鉴。

关键词:

煤矿井下钻探 , 地层可钻性 , 钻进参数 , 鲸鱼算法 , 机器学习

Abstract: The complex and variable formation conditions pose a great challenge to safe and efficient production in coal mines. By establishing a drillability prediction model based on drilling data, intelligent perception of formation types can be achieved, providing geological information support for the drilling process.Addressing the issues of outliers and unbalanced sample sizes in coal mine drilling data, we employ the Local Outlier Factor (LOF) anomaly detection algorithm to remove abnormal drilling data. Additionally, we leverage a Generative Adversarial Network (GAN) to train on the original drilling samples, thereby obtaining generated drilling samples to construct a balanced drilling dataset.A method for predicting the drillability of a formation using a whale optimization algorithm-based kernel extreme learning machine (WOA-KELM) is proposed, which combines the drillability of the formation as an evaluation index. A prediction model based on the optimized WOA-KELM is constructed to predict the level of drillability of the formation.Through the actual drilling data in Huainan mining area, we obtained drilling parameters such as weight on bit (WOB), rotation speed, and penetration rate. After eliminating outliers using LOF, GAN was used to generate samples with high similarity to the original ones. The reliability of these generated drilling samples was verified through box plots, recognition rates, and scatter plot distributions.Using the generated sample balanced drilling dataset, a formation drillability prediction model was established through WOA-KELM for drilling process. The accuracy of formation drillability prediction reached about 98%, which is superior to recognition models such as SVM and KNN.The research results provide a reference for the adaptive drilling and intelligent perception technology in coal mines.